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The oxygen isotope composition (δ18O), accumulation of minerals (ash content), and nitrogen (N)

content in plant tissues have been recently proposed as useful integrative physiological criteria

associated with yield potential and drought resistance in maize. This study tested the ability of near-

infrared reflectance spectroscopy (NIRS) to predict δ18O and ash and N contents in leaves and

mature kernels of maize. The δ18O and ash and N contents were determined in leaf and kernel

samples from a set of 15 inbreds and 18 hybrids grown in Mexico under full irrigation and two levels

of drought stress. Calibration models between NIRS spectra and the measured variables were

developed using modified partial least-squares regressions. Global models (which included inbred

lines and hybrids) accurately predicted ash and N contents, whereas prediction of δ18O showed

lower results. Moreover, in hybrids, NIRS clearly reflected genotypic differences in leaf and kernel

ash and N contents within each water treatment. It was concluded that NIRS can be used as a

rapid, cost-effective, and accurate method for predicting ash and N contents and as a method for

screening δ18O in maize with promising applications in crop management and maize breeding

programs for improved water and nitrogen use efficiency and grain quality.
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INTRODUCTION

The use of integrative physiological traits is a valuable tool in
breeding programs assisted by analytical selection for improving
yield potential and stress adaptation of cereals (1-3). Among
these integrative traits, oxygen stable isotope signature (expressed
for example as a composition, δ18O) and mineral accumulation
(measured as ash content) in plant organic matter have been
proposed as indirect methods for assessing the photosynthetic
and transpirative performance of crops. The δ18O of plant matter
reflects the isotopic composition of source water, the evaporative
enrichment due to transpiration, and the biochemical fractiona-
tion during synthesis of organic matter (4). The accumulation of
minerals in leaves provides information on transpirative gas-
exchange activity, whereas mineral content in mature kernels can
be related to photosynthetic and retranslocation processes occur-
ring during grain filling of cereals such as wheat (5, 6) and
maize (7). Recent studies have demonstrated the utility of the
oxygen isotope signature and mineral accumulation in leaves and
kernels (measured as ash content) to assess the yield of maize (Zea
maysL.) genotypes better suited to different water conditions (7-9).

High nitrogen content is a desirable trait for improving grain
quality; for example, it is targeted in the development of quality

protein maize (QPM) (10, 11). Additionally, N content in
vegetative tissues is of interest towater and nitrogen use efficiency
breeding programs because of its effect on leaf photosynthesis,
which determines final grain yield (12).

However, despite the potential value of these analyses, the
refined technical skills required, together with the high cost of
oxygen isotope analysis (over U.S. $15 per sample), the slowness
of mineral and N content determination, and the destructive
nature of reference methods often limit their use, especially in
early generations of breeding programs when many genotypes
must be screened and seed may be scarce.

Near-infrared reflectance spectroscopy (NIRS) is a chemo-
metric technique that combines spectroscopy andmathematics to
rapidly produce indirect, quantitative estimates of the concentra-
tions of OH-, NH-, CH-, or SH-containing compounds. Com-
pared to wet chemistry procedures, NIRS requires simple sample
preparationmethods, is fast, accurate, and highly repeatable, and
can be a nondestructive and, most importantly, inexpensive
technique (<U.S. $1 per sample) facilitating simultaneous anal-
ysis of multiple traits (13, 14). NIRS is currently used to assess
feed and food quality traits in various crop species including
maize, wheat, sorghum, and soybean. Such NIRS assessments
include not only organic plant compounds, such as total nitrogen,
moisture, fiber, carbohydrates, and amino acids (see ref 15 and
references cited herein), but also inorganic compounds such as
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minerals because most of these elements are associated with
organic or hydrated molecules (15, 16). Stable isotopes such as
the stable carbon isotope composition (δ13C) of plant materials
(17-19) and soils (19-21) can also be estimated by the NIRS
technique; recently, Kleinebecker et al. (22) accurately predicted
δ13C and nitrogen isotope composition (δ15N) and N content
usingNIRSby combining data fromanumberof species in awide
range of growing conditions. Although δ18O can be incorporated
into organic molecules with NIR absorbance, to our knowledge,
δ18O has not been assessed usingNIRS. This is despite the potential
of δ18O to replace other integrative traits such as δ13C in the
breeding for drought resistance in C4 crops, such as maize (7).

Drought is a major constraint to maize yields, particularly in
the tropics (23). NIRS may be useful not only in assessing
differences in quality traits but also in providing data on breeding
for genotypic differences in grain yield and stress adaptation. This
could involve not just determining δ18O but also traits typically
associated with quality such as N and mineral contents in
vegetative tissues and grains. NIRS’s utility may be limited in
breeding for yield and stress adaptation, as the above traits show
greater variability under environmental stresses than among
genotypes (5,7,8,24). This is particularly evident for δ18O, given
the relatively low range of differences associated with genotypic
variability. Nevertheless, the use of NIRS for selection may have
some advantages, because it makes selection before planting
much more feasible, saving time and resources. For example, in
the case of the QPMmaize breeding program at the International
Maize andWheat ImprovementCenter (CIMMYT), screening S2
(second generation of inbreeding) nurseries before planting could
reduce total costs by up to 20% (11).

The first objective of the research reported here was to test
whether NIRS can be used to predict δ18O and ash and N
contents in maize leaves and kernels. Second, we evaluated the
potential use of NIRS as a genotypic selection tool with applica-
tions in maize breeding programs for improved water and
nitrogen use efficiency and grain quality.

MATERIALS AND METHODS

Plant Material and Growth Conditions. Two experiments were
conducted at CIMMYT’s experiment station in Tlaltizapán, Mexico (18�

410 N, 99� 070 W, 940 m above sea level) during the 2007 and 2008 dry

seasons (November-May). In 2007, a set of 15 contrasting tropical maize

(Z. mays L.) inbred lines derived from the La Posta Sequı́a (LPS)
population, 17 single hybrids (resulting from single crosses generated by

crossing LPS lines with the tropical testers CML-449 and CML-495), and
one commercial hybrid (cv. Puma), used as a check,were grownunder field

conditions and subjected to three different water regimes: full irrigation
(WW), intermediate stress (IS), and severe stress (SS). Plants received ca.

1500, 675, and 325 mm of water for the WW, IS, and SS treatments,

respectively. In 2008 the same hybrids and check used in 2007, together
with an extra hybrid from the same population, were grown under the

same field and received ca. 1510, 481, and 331mmofwater for theWW, IS,
and SS treatments, respectively (Table 1). Trials for each condition during

the 2007 and 2008 seasons were randomized in a complete block design
with three replications per genotype. Growing conditions for experiments

conducted during 2007 and 2008 are detailed in Araus et al. (9).
Oxygen Isotope Composition and Ash and Total Nitrogen Con-

tent Analyses.Referencemethods were performed in only leaf and kernel
samples from the 2007 season. Leaf samples were collected fromone entire

plant per plot 2 weeks after anthesis before the onset of senescence. Kernel
samples from the entire plot were collected at maturity. Both leaf and kernel

samples were oven-dried at 60 �C for 48 h, after which theyweremilled using

a cyclotec mill (manufactured by Tecator Höganäs) with a 0.5 mm sieve.
The 18O/16O ratios of kernel and leaf samples were analyzed at the

Colorado Plateau Stable Isotope Laboratory (CPSIL). Samples of about
0.3 mg and reference materials were weighed into silver capsules and

analyzed via pyrolysis over glassy carbon at 1350 �C using a Thermo-

Electron TC/EA (thermochemical elemental analyzer) interfaced via a
CONFLO-II to a gas IRMS (isotope ratio mass spectrometer) Thermo

ElectronDelta PlusXL (FinniganMAT,Bremen,Germany).Resultswere
expressed as δ18O values, using two secondary standards (IAEA 601 and

IAEA 602) calibrated against Vienna Standard Mean Oceanic Water

(VSMOW) with an analytical precision of about 0.3%.
The same samples were used for ash content determination [AACC

Method 08-01 (25)]. Briefly, 2 g of dry mass was placed in preweighed
porcelain crucibles. Samples were burnt in a muffle furnace for 6-8 h at

600 �C. Then, the mineral residue was weighed. Results were expressed as

percentage of dry mass (%).
The total N content of the same kernels and leaf samples was analyzed

at CPSIL using an Elemental Analyzer (Carlo Erba 2100, Milan, Italy).
Results were expressed as percentage of dry mass (%).

NIR Measurements and Spectrum Acquisition. The same kernel
and leaf samples used for δ18O and ash and N content determination

Table 1. Detailed Pedigree of the Drought-Tolerant Inbred Lines Derived from the La Posta Sequı́a (LPS) Population and the Hybrids Generated by Crossing These
Lines with the Tropical Testers CML-449 and CML-495 Used in the Experiments Conducted during the 2007 and 2008 Dry Seasons

hybrids inbred lines

CML-495 � CML-449a,b La Posta Seq C7-F103-3-1-1-1-B-B-Ba

La Posta Seq C7-F103-3-1-1-1-B-B � CML-495a, La Posta Seq C7-F103-2-6-1-1-B-B-Ba

La Posta Seq C7-F103-2-6-1-1-B-B � CML-495a,b La Posta Seq C7-F103-3-2-1-1-B-B-Ba

La Posta Seq C7-F103-3-2-1-1-B-B � CML-449a,b La Posta Seq C7-F180-3-1-1-1-B-B-Ba

La Posta Seq C7-F180-3-1-1-1-B-B � CML-449a,b La Posta Seq C7-F236-1-2-1-B-Ba

La Posta Seq C7-F236-1-2-1-B-B x CML-449) � DTPWC9-F32-1-5-1-B-Ba,b La Posta Seq C7-F31-2-4-1v-1-B-B-Ba

La Posta Seq C7-F31-2-4-1-1-B-B � CML-449a,b La Posta Seq C7-F64-1-1-1-1-B-B-Ba

La Posta Seq C7-F64-1-1-1-1-B-B � CML-449a,b La Posta Seq C7-F64-2-3-1v-2-B-B-Ba

La Posta Seq C7-F64-2-3-1-2-B-B � CML-449a,b La Posta Seq C7-F64-2-6-1-2-B-B-Ba

La Posta Seq C7-F64-2-6-1-2-B-B � CML-495a,b La Posta Seq C7-F64-2-6-2-1-B-B-Ba

La Posta Seq C7-F64-2-6-2-1-B-B � CML-449a, La Posta Seq C7-F64-2-6-2-2-B-B-Ba

La Posta Seq C7-F64-2-6-2-2-B-B � CML-449a,b La Posta Seq C7-F71-1-2-1-1-B-B-Ba

La Posta Seq C7-F64-2-6-2-2-B-B � CML-495a,b La Posta Seq C7-F86-3-1-1-1-B-B-Ba

La Posta Seq C7-F71-1-2-1-1-B-B � CML-449a,b La Posta Sequia C7-F125-1-3-1-B-Ba

La Posta Seq C7-F86-3-1-1-1-B-B � CML-495a,b La Posta Sequia C7-F55-3-2-1-B-Ba

La Posta Sequia C7-F125-1-3-1-B � CML-449a,b

La Posta Sequia C7-F55-3-2-1-B � CML-449a,b

La Posta Sequia C7-F32-3-1-1-B � CML-449b

La Posta Seq C7-F96-1-2-1-3-B � CML-495b

La Posta Seq C7-F96-1-6-2-1-B-B � CML-495b

Puma (Asgrow, Monsanto)a,b

aExperiment 2007. b Experiment 2008.
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together with kernel samples from the 2008 season were analyzed using a
scanningmonochromator NIRSystems 6500 spectrometer (Foss NIRSys-
tems, Inc., Silver Spring, MD). For each sample, about 4 g of ground
material was placed in a small ring cup (37 mm diameter) with a quartz
glass cover, and the NIR reflectance spectra were determined at 2 nm
intervals from 400 to 2500 nm. The spectrophotometer was controlled
through its bundled software (ISI Software, Intrasoft International, LLC),
and spectral data were recorded as log 1/R (where R is reflectance).
Because of the small amount of kernel samples from SS treatments
obtained in 2007, some samples were not used for NIRS determination.

Development of NIRS Calibration and Validation Curves. To
compile calibration and validation setswith similar distribution for eachof
the studied traits, ash, N, and δ18O data from each of the sets (all samples
and hybrids) were sorted by ascending reference values, and stratified
samples consisting of half the samples for each trait were selected system-

atically from the whole range of values. The remaining samples were used
for validation (see Table 2). Sample sets and calibration and validation
statistics were chosen using WinISI software, version 3.0 (Infrasoft
International, LLC). Calibration equations were developed using a
modified partial least-squares (MPLS) method. A cross-validation meth-

od was used to determine the number of factors in the regression models
and to avoid overfitting. Four cross-validation segments were used. The
scatter correction of standard normal variant and detrend (SNV-D) was
applied (26). Themathematical treatment was set to 1,4,4,1, where the first
number is the degree of the derivative, the second is the gap between data

points for subtraction, and the third and fourth are the number of data
points used for smoothing (27). The results of the calibration calculation
weremonitored by checking theT, globalH (GH), andX outliers. Outliers
with T>2.5 and GH and X>10 were not considered for calibration
development. Two outlier elimination passes were made.

Global calibration models combining inbred line and hybrid data were
then constructed for leaf and kernel ash, N content, and δ18O. Addition-

ally, specific calibration models for leaf and kernel ash and N content and
kernel δ18O were developed using samples from hybrids.

The standard error of calibration (SEC), the coefficient of determina-
tion in calibration (R2

c), and the standard error of cross-validation (SECV)
were calculated. The ratio of performance deviation (RPD), defined as the
ratio between the standard deviation (SD) of the calibration population
and the SECV, was used to test the accuracy of the calibration models.
Moreover, to evaluate the predictive ability of the models, we calculated
the standard error of prediction (SEP), slope, and coefficient of determi-
nation in validation (R2

v). As the quality and robustness of a NIRS
calibration can be judged by the SEP and SD/SEP (28), we calculated the
ratio between the SD and SEP for each trait.

Statistical Analyses. Two-way analysis of variance (ANOVA) was
performed using the general linearmodel procedure to calculate the effects
of water regime and genotype on the studied parameters. Within each

experiment,meanswere comparedby the least significant difference (LSD)
multiple-range test (P<0.05). Data were analyzed by the SPSS 15.0
statistical package (SPSS Inc., Chicago, IL).

RESULTS AND DISCUSSION

Reference Sample Distribution. Water regime and genotype
significantly affected leaf and kernel δ18O and ash andN contents
in both hybrids and inbred lines, with the water regime exerting
the greater effect, as revealed by ANOVA (see the Supporting
Information, Tables S1 and S2). Table 2 shows the number of
samples, mean SD, and range, as well as the coefficient of
variation (CV) of the calibration and validation data sets used
to construct the global and hybrid-specific models. Calibration
data sets for each of the studied traits shared a similar range
of mean and SD values with validation models. The CV exceeded
10% for ash and N contents in both leaves and kernels, with
the leaf ash content showing the largest CV (ca. 20%). In contrast,
CV values of<4.5% were observed for the kernel and leaf δ18O.

NIRS Calibration and Validation Development. In global cali-
bration models, higher determination coefficients of calibration
(R2

c) were observed for leaf and kernel ash and N contents
compared with leaf and kernel δ18O (Table 3). Nevertheless, all
of the calibration regressions showed highly significant R2

c

(P<0.001) and relatively low SEC values. On the basis of the
RPD values, calibrations for leaf and kernel ash and leaf N
contents showed good predictions, whereas the rest of the
calibrations would be useful for screening purposes (29). Global
models accurately predicted leaf and kernel N content withR2

v>
0.7 and SD/SEP>2 (Table 3; Figure 1a,b), leaf ash content with
R2

v=0.92 and SD/SEP=3.46, and ash content in kernels with
R2

v=0.74 and SD/SEP=1.96 (Table 3; Figure 1c,d). In addition,
the predictive ability for δ18O was lower compared with models
predicting ash and N contents, with values in kernels of R2

v=
0.54, SEP=0.96%, and SD/SEP=1.45 and in leaves ofR2

v=0.36,
SEP=1.06%, and SD/SEP=1.24 (Table 3; Figure 1e,f).

Kernel δ18O and maize quality traits (including N and ash
contents in leaves and kernels) are potential traits for assessing
yield performance and drought resistance inmaize hybrids grown
under different water conditions (7,8,12). Thus, specific calibra-

Table 2. Composition of the Calibration and Validation Global Sample Sets
(Including Inbred Lines and Hybrids) and Specific Sample Sets for Hybrids for
N, Ash, and δ18O in Kernels and Leaves Obtained by Reference Methodsa

calibration validation

trait n mean SD range CV n mean SD range CV

Global Models

Nkernels 121 1.81 0.22 1.26-2.54 12.2 128 1.83 0.25 1.15-2.62 13.7

Nleaves 139 1.56 0.22 0.99-2.05 14.1 149 1.57 0.23 0.92-2.17 14.6

ashkernels 126 1.44 0.24 0.92-2.04 16.7 128 1.45 0.25 0.91-2.10 17.3

ashleaves 146 14.2 2.89 8.78-21.5 20.4 148 13.92 2.88 8.75-21.4 20.7

δ18Okernels 123 31.8 1.33 28.0-35.0 4.2 128 31.73 1.43 27.9-35.0 4.5

δ18Oleaves 141 32.9 1.20 29.2-38.3 3.6 147 33.04 1.31 28.5-36.6 4.0

Hybrid Models

Nkernels 68 1.75 0.24 1.2-2.3 13.7 69 1.75 0.25 1.15-2.24 13.9

Nleaves 77 1.48 0.21 0.99-2.17 14.2 81 1.49 0.21 0.92-1.95 14.3

ashkernels 68 1.38 0.26 0.92-2.10 18.8 69 1.37 0.26 0.91-1.88 19.2

ashleaves 76 14.7 2.86 10.4-21.4 19.5 81 14.85 2.99 10.0-21.5 20.1

δ18Okernels 68 31.0 1.04 28.0-33.5 3.4 69 30.91 1.09 27.9-33.5 3.5

a n, number of samples; SD, standard deviation; CV, coefficient of variation.

Table 3. Descriptive Statistics of the Calibration and Validation Global
Sample Sets (Including Inbred Lines and Hybrids) and Specific Sample Sets
for Hybrids for Leaf and Kernel N and Ash Contents and Kernel Oxygen
Isotope Composition (δ18O)a

calibration validation

trait terms T outliers SEC R2c SECV RPD SEP R2v SD/SEP slope

Global Models

Nkernels 4 6 0.06 0.93 0.06 3.66 0.09 0.87 2.76 0.99

Nleaves 9 8 0.06 0.92 0.07 3.14 0.11 0.73 2.09 0.96

ashkernels 4 1 0.11 0.76 0.12 1.87 0.13 0.74 1.96 0.94

ashleaves 10 1 0.50 0.97 0.61 4.73 0.81 0.92 3.46 0.96

δ18Okernels 8 4 0.61 0.79 0.78 1.71 0.98 0.54 1.45 0.86

δ18Oleaves 5 6 0.80 0.55 0.88 1.36 1.06 0.36 1.24 0.78

Hybrid Models

Nkernels 3 1 0.07 0.91 0.08 2.98 0.08 0.88 3.81 1.11

Nleaves 5 4 0.06 0.90 0.07 2.60 0.09 0.79 2.76 1.00

ashkernels 3 1 0.10 0.86 0.11 2.36 0.14 0.71 2.51 0.95

ashleaves 7 5 0.38 0.98 0.52 5.5 0.67 0.95 5.61 0.96

δ18Okernels 3 1 0.60 0.67 0.69 1.50 0.65 0.64 1.69 1.10

a Terms, number of PLS terms;R2
c, determination coefficient of calibration; RPD,

ratio of performance deviation; SEC, standard error of calibration; SECV, standard
error of cross calibration; SEP, standard error of prediction.
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tion and validation models for the kernel and leaf N and ash
contents and the δ18O of kernels were developed for hybrids
(Table 3). The accuracy of calibrations for leaf and kernel N and
ash for hybrids alone slightly improved on the global model
combining inbred lines and hybrids (Table 3). RPD values
showed good predictions for leaf and kernel N and ash contents.
Consequently, the predictive ability of leaf and kernel N and ash
contents for hybrids alone also slightly increased compared with
globalmodels, with anR2

v of 0.88, SEP=0.07%, and SD/SEPof
3.81 for kernel N content, anR2

v of 0.79, SEP= 0.09%, and SD/
SEP of 2.76 for leaf N content (Table 3; Figure 2a,b), an R2

v of
0.71, SEP = 0.14%, and SD/SEP of 2.51 for kernel ash content,
and anR2

v of 0.95, SEP=0.67%, and SD/SEP of 5.61 for leaf ash

content (Table 3; Figure 2c,d). The predictive ability of δ18O of
kernels using specific models for hybrids improved compared to
general models, according to the decrease in SEP (from 0.98 to
0.65%) and the increase in the SD/SEP ratio (from 1.45 to 1.69),
although the RPD values remained low (Table 3).

Farmers grow mainly hybrids; therefore, evaluation of their
performance is more relevant than evaluation of the performance
of parental lines because the relationship between line and hybrid
performance is not very strong (29). However, evaluating lines is
also of interest because the study of heterosis (the superior
performance of heterozygous hybrid plants over their homozy-
gous parental inbred lines) might open opportunities for increas-
ing yield potential and stress adaptation (9).

Figure 1. Relationships between themeasured and theNIRS-predicted values in globalmodels including lines and hybrids for (a) kernel nitrogen (N) content,
(b) leaf N content, (c) kernel ash content, (d) leaf ash content, (e) kernel oxygen isotope composition (δ18O), and (f) leaf δ18O. Dashed lines represent the
prediction intervals (P < 0.05). n, number of samples; R2, determination coefficient; SEP, standard error of prediction.
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Leaf ash content predictions in both hybrids and lines together
and hybrids alone showed a high accuracy (R2

v>0.90) and SD/
SEP>3.5). This could be explained by numerous causes due to
the large range of variation observed in this trait across samples
and treatments, about 12% (i.e., CV of 20%), and because of
the relevance of the chemical composition of this trait, constitut-
ing between 9 and 21% of the dry weight of the sample. This is
supported by the lower R2

v values observed for ash content in
kernels (constituting only on average 1.5% of the kernel dry
weight). Our results are in accordance with a number of studies
that predicted leaf ash content in different grass species withR2 of
0.97-0.98 and SEP of 0.73-0.98% (30, 31), pasture samples (R2

of 0.88 and SEP of 0.51%) (32), and bread wheat kernels (SEP of

0.14%) (33). Nevertheless, it should be noted that ash content has
no NIR signature. The NIR calibration is based on correlations
with organic molecules associated with minerals that have an
NIR absorbance pattern that may vary among species (15,16,33).

The ability of NIRS to determine N content in both leaves and
kernels is well documented in the literature (14). The strongN-H
absorptions in the NIR region and the relatively high concentra-
tions of N in plant tissues (here 1-2.5% of dry weight) are the
primary causes for these accurate predictions (33). In contrast, the
predictive ability of NIRS for determining leaf δ18O (global
models) and kernel δ18O (global models and hybrids alone) was
lower (as assessed by the lower R2

v and SD/SEP) compared with
the other traits studied. This can be explained in part because of

Figure 2. Relationships between the measured and the NIRS-predicted values in hybrids for (a) kernel N content, (b) leaf N content, (c) kernel ash content,
(d) leaf ash content, and (e) kernel oxygen isotope composition (δ18O) in hybrids. Dashed lines represent the prediction intervals (P < 0.05). n, number of
samples; R2, determination coefficient; SEP, standard error of prediction.
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the low range of variation observed for leaf and kernel δ18O. In
fact, coefficients of variation for leaf and kernel δ18O were lower
than 4.5%, compared with the other traits studied for which CV
ranged between 11 and 20%, showing a lower range of variation.

On the other hand, the improvement in the calibrations and
validations for kernel δ18O using specific models for hybrids, as
compared with the model combining both inbred lines and
hybrids, may be due to differences in the chemical compositions
of hybrid kernels versus kernels of inbred lines (e.g., lower N and
higher starch content in hybrids), which probably impairs the
establishment of a global model for δ18O. Finally, and probably
most importantly, the NIRS prediction of stable isotope compo-
sition relies on variation of parameters such as the amounts of

starch, protein, and water indirectly associated with the stable
isotope signature and which are quantified by NIRS (18). In this
way it is well-known that water availability not only has a strong
influence on the oxygen isotope composition (4, 7, 8, 34) but is
also likely to affect chemical characteristics of kernels related to
grain quality (see ref 18 and references herein) that may be
associated with variation in δ18O. Whereas δ18O has not been
assessed before in any crop using NIRS, other stable isotopes,
such as δ13C and δ15N, have been predicted by NIRS in different
plant species. δ13C has been predicted in wheat kernels with a R2

of 0.82 and a RMSEP of 0.55% (19). Similarly, δ13C was
predicted in alfalfa leaves and several grass species with a R2 of
0.69-0.93 and a RMSEP of 0.35-0.59% (17). More recently,

Figure 3. Relationships between the measured and the NIRS-predicted values in hybrids for (a) kernel N content, (b) leaf N content, (c) kernel ash content,
(d) leaf ash content, and (e) kernel oxygen isotope composition (δ18O). Within each water treatment (WW, IS, and SS), each symbol represents the average
of the three replicates of each of 18 genotypes assayed. /, P < 0.05; //, P < 0.01; ///, P < 0.001; ns, not significant.
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δ13C has been predicted in a number of Chilean species with a R2

and SEP ranging between 0.79 and 0.89% and between 0.64 and
0.44%, respectively, and δ15N with a R2 of 0.96 and SEP ranging
between 1.42 and 1.99% (22). Therefore, our predictions of δ18O
in hybrid kernels, and also the predictions of kernel and leaf δ18O
using thewhole data set (hybrids and inbred lines), have statistical
performance similar to those reported in the literature for
prediction of isotopic composition by NIRS. Nevertheless, even
though the analytical precision of IRMS for δ13C and δ15N
obtained in the former studies was about 0.1-0.15%, it should be
noted that the precision attained for δ18O was about 0.3%. Such
results are in line with differences in the precision of 13C, 15N, and
18O analyses for cereals published in other recent papers (see, e.g.,
refs34-36).Moreover, althoughpreviousNIRS studies on stable
isotopes have reported SEPs that are about 3-10 times higher
than the accuracy in the analytical measurements (17,18,22), the
SEPwas only 2-3 times higher in our work. Our study, however,
focused on only one species (maize), and the aim was to assess
genotypic differences for these traits within each growing condi-
tion, rather than to compare one or several species across different
growing conditions. Therefore, if the objective is to use NIRS for
plant breeding, it may be difficult to develop highly accurate
calibration and predictionmodels. Despite this,NIRS assessment
of δ18O may be useful for plant ecology and crop management
studies, when different growing conditions are compared; the
range of genotypic values for the above traits was usually smaller
than in studies aimed at implementing this analytical technique in
plant ecology (see, e.g., ref 22) or crop management, when
different growing conditions and one or several species are
compared. The interest in NIRS to detect differences in kernel
δ18O stems from the potential usefulness of δ18O in maize
breeding. It has been shown that δ18O integrates the evaporative
conditions throughout the crop cycle (4), and it has been
proposed as a proxy method for assessing the environmental
and genotypic differences related to drought resistance and yield
potential in maize (7, 8).

Besides the predictive ability of NIRS for determiningN and ash
contents andδ18O, its usefulness as a selection tool inmaizebreeding
was also tested. Figure 3 shows that NIRS not only was able to
predict ash and N contents in leaf and kernel maize samples across
water treatments but also clearly reflected genotypic differences
within each water treatment. This can be observed with the highly

significant relationships (P<0.001) between the measured and the
NIRS-predicted leaf and kernel traits (N and ash contents) within
eachwater regime (WW, IS, and SS) across the 18 hybrid genotypes
assayed (Figure 3a-d). Thus, according to our results, NIRS
provides breeders with a powerful tool to select maize genotypes
with desirable quality properties such as N and ash contents. Ash
content in leaves and kernels and N content in leaves have been
previously shown to be useful selection criteria for drought resis-
tance and nitrogen use efficiency in maize hybrids (7), whereas
increased kernel N content is a targeted trait in QPM maize
breeding (10, 11). On the other hand, although NIRS clearly
reflected differences in kernel δ18O across water regimes with
adequate accuracy, genotypic differences within each growing
condition were weakly predicted (Figure 3e). As explained before,
the lower predictive ability of the models for δ18O compared with
the models for ash and N contents and the reduced range of
variation in kernel δ18O across (CV<4.5%) and within each water
regime (CV<2.2%) may explain such results.

In addition, calibrations obtained for ash,N, and δ18O of kernels
for hybrids from the experiment conducted in 2007were testedusing
grain from the experiment performed in 2008; ash and N contents
and δ18O were predicted in kernel samples from hybrids grown
under three contrasting water regimens in 2008. Although no
reference tests were performed in those kernel samples, the resulting
NIRS-predicted traits (kernel ash and N contents and kernel δ18O)
showed values that were in line with those obtained in 2007
(Table 4). NIRS-predicted kernel ash contents ranged between 1.2
and 2.6%, kernel N contents between 1.4 and 2.5%, and kernel
δ18O values between 29.5 and 34.0%.Moreover, according to what
is reported in the literature and according to the results obtained in
2007, δ18O values decreased with increasing water availability
(4, 7-9), and the proportion of minerals (ash) and N in kernels
increased with drought (9), showing clear differences between
irrigated and water-limited treatments.

We conclude that NIRS can be used as a rapid, cost-effective,
and sufficiently accurate method for predicting ash and N
contents and for screening δ18O in leaf and kernel maize samples.
However, as clearly indicated by Foley et al. (14), NIRS is not
supposed to replace IRMS for determining isotopic compositions
of plant material; ultimately, data must be confirmed by IRMS.
Nevertheless, owing to the high costs and time requirements of
IRMS analyses, NIRS can be used efficiently in early generations
of maize breeding programs when thousands of genotypes must be
screened. This would help breeders to select maize genotypes with
desirable leaf and kernel attributes, such as ash and N contents or
δ18O values, associated with superior grain quality and/or better
yieldperformance anddrought adaptation.Furthermore, one of the
benefits of NIRS is the use of whole grains for measurements; this
nondestructive technique is suitable for research when a limited
amount of seed is available (37). Further calibrations using whole
grain are needed to improve the applicability of NIRS to breeding.
There is also growing interest in the field-level application of NIRS
by use of hand-held spectroradiometers for in situ and in vivo
determination of desirable plant traits (2).

ABBREVIATIONS USED

CV, coefficient of variation; δ18O, oxygen isotope composi-
tion; IRMS, isotope ratio mass spectrometry; NIRS, near-
infrared reflectance spectroscopy; MPLS, modified partial least-
squares; R2

c, determination coefficient of calibration; R2
v, deter-

mination coefficient of validation; RPD, ratio of performance
deviation; SD, standard deviation; SEC, standard error of
calibration; SECV, standard error of cross-validation; SEP,
standard error of prediction.

Table 4. Mean and SD Values for the Measured Grain Yields and Measured
and NIRS-Predicted Kernel N and Ash Contents and δ18O in Hybrids Grown
under Three Different Water Regime in 2007 and 2008a

experiment 2007 experiment 2008

kernel N (%) measured NIRS-predicted

SS 1.96 ( 0.13a 1.99 ( 0.09a

IS 1.89 ( 0.13b 1.96 ( 0.12a

WW 1.49 ( 0.12c 1.66 ( 0.12b

kernel ash (%)

SS 1.69 ( 0.12a 1.91 ( 0.12a

IS 1.45 ( 0.16b 1.88 ( 0.17a

WW 1.11 ( 0.11c 1.45 ( 0.17b

kernel δ18O (%)

SS 32.2 ( 0.6a 32.0 ( 0.4a

IS 31.2 ( 0.7b 31.9 ( 0.5a

WW 29.9 ( 0.7c 30.5 ( 0.5b

grain yield (Mg ha-1) measured

SS 0.4 ( 0.2c 0.8 ( 0.5c

IS 1.5 ( 0.7b 1.8 ( 0.8b

WW 7.3 ( 1.5a 9.6 ( 1.2a

aWithin each experiment, values with different letters are significantly different
(P < 0.05) according to the LSD test.
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